

Revista ADM.MADE

Revista do Mestrado em Administração e Desenvolvimento Empresarial - Universidade Estácio de Sá

Revista ADM.MADE, Rio de Janeiro, ano 12, v.16, n.2, p.32-50, maio/agosto, 2012

Revista do Mestrado em Administração e Desenvolvimento Empresarial da Universidade Estácio de Sá – Rio de Janeiro (MADE/UNESA). ISSN: 2237-5139 Conteúdo publicado de acesso livre e irrestrito, sob licença Creative Commons 3.0. Editora responsável: Isabel de Sá Affonso da Costa Organizador do número temático: Marco Aurélio Carino Bouzada

Avaliação da Eficiência Preditiva de Volatilidade Implícita e de Média Móvel para os Preços Futuros de Boi Gordo do Brasil

Waldemar Antônio da Rocha de Souza¹
Manoel Martins do Carmo Filho²
Sandro Breval Santiago³
Eliza Maria Nascimento Albuquerque⁴
Pedro Valentim Marques⁵

Uma versão preliminar deste artigo foi apresentada e publicada nos Anais do XXXVI Enanpad, setembro de 2012, Rio de Janeiro – RJ.

Artigo recebido em 22/11/2012 e aprovado em 17/12/2012. Artigo convidado à submissão e avaliado em double blind review.

¹ Doutor em Economia Aplicada pela Escola Superior de Agricultura Luiz de Queiróz, da Universidade de São Paulo (ESALQ/USP). Professor do Departamento de Administração da Universidade Federal do Amazonas (DADM/UFAM). Endereço: Campus Universitário, Setor Norte, Bloco X, sala 28 – Manaus, AM – CEP: 69077-000. Email: warsouza@ufam.edu.br.

² Doutor em Engenharia de Transportes pelo Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia da Universidade Federal do Rio de Janeiro (COPPE/UFRJ). Professor do Departamento de Contabilidade da Universidade Federal do Amazonas (DECON/UFAM). Endereço: Rua General Rodrigo Otávio J. Ramos, 3000 - Campus Universitário – Aleixo - Manaus, AM – CEP: 69077-000. Email: martins.manoel@gmail.com.

³ Mestre em Engenharia de Produção pelo Programa de Engenharia de Produção da Universidade do Amazonas (PEP/UFAM). Professor do DADM/UFAM. Email: sbreval@gmail.com.

⁴ Mestre em Contabilidade e Controladoria pelo Programa de Mestrado Profissional em Contabilidade e Controladoria da Universidade Federal do Amazonas (PPGCCOM/UFAM). Professora do Centro Universitário do Norte (UNINORTE). Endereço: Av. Joaquim Nabuco – Centro – CEP: 69020-030 - Manaus, AM. Email: elizanasci@hotmail.com.

⁵ Doutor em Economia Agrícola pela University of Kentucky, Estados Unidos. Professor da ESALQ/USP. Endereco: Av. Pádua Dias, 11 – Agronomia - CEP: 13419-440 - Piracicaba, SP. Email: pymargues@usp.br.

Avaliação da Eficiência Preditiva de Volatilidade Implícita e de Média Móvel para os Preços Futuros de Boi Gordo do Brasil

Para prever a volatilidade realizada do contrato futuro de boi gordo com vencimento mais próximo, no horizonte de uma semana à frente, esta pesquisa comparou as previsões de curto prazo da volatilidade dos preços de carne bovina brasileira, examinando a volatilidade implícita das opções de boi gordo da BM&F-BOVESPA, a média histórica de três semanas e a previsão simples, Foram testados a robustez, o viés e a eficiência, identificando-se a média de três semanas como melhor previsor. O resultado pode gerar informações para decisões estratégicas de produção, de comercialização e de *hedge* na cadeia de boi gordo do Brasil, monitorando e aferindo o grau de risco associado.

Palavras-chave: eficiência preditiva; volatilidade implícita; média móvel; preços futuros; boi gordo.

Keywords: forecasting efficiency; implied volatility; moving average; futures price; live cattle.

Evaluation of Predictive Efficiency of Implied Volatility and Moving Average for Brazilian Live Cattle Futures Prices

To forecast the realized volatility of the nearby live cattle futures contract maturing on a week ahead horizon, this research compared the short-term Brazilian live cattle futures price volatility forecast, examining the BM&F-BOVESPA live cattle options implied volatility, the historical three weeks average and the simple forecast. We tested the robustness, bias and efficiency, identifying the three weeks average of as a better predictor. The result can generate information for strategic decisions of producers, traders and hedging in the Brazilian beef industry supply chain, monitoring and measuring the degree of associated risk.

1. Introdução

O mercado de boi gordo é relevante para a renda do agronegócio do Brasil. Por exemplo, para o ano de 2011 previu-se a produção de 9,2 milhões de toneladas de carne de boi, totalizando exportações de 1,4 milhões de toneladas, com aumento de 2% e de 4%, respectivamente, em relação ao ano anterior (USDA, 2011). A produção distribui-se entre produtores, frigoríficos e demais agentes da cadeia de oferta. Diante dos crescentes volumes e da complexidade das operações, os agentes necessitam administrar os riscos operacionais, em particular de preços, usando os mecanismos disponíveis no mercado.

Com efeito, o recente regime de preços prevalecente nos mercados de *commodities* a partir de 2008 aumentou os preços médios e sua volatilidade, elevando o grau de risco dos preços agropecuários (EUROPEAN COMMISSION, 2010). Adicionalmente, a ocorrência de surtos periódicos de febre aftosa impacta a produção e o processo de precificação de carne bovina brasileira, elevando o risco de preço para os agentes (TEIXEIRA; MAIA, 2008). Nesse sentido, uma das principais informações para a gestão de riscos do mercado de carne bovina é a variação esperada dos preços durante o horizonte temporal adequado às decisões de produção, de comercialização e de *hedge*.

Para ilustrar a mitigação dos riscos de preço da indústria de carne bovina do Brasil podem-se empregar os contratos futuros e de opções de boi gordo da BM&F-BOVESPA. Além disso, as opções de boi gordo permitem a elaboração de estratégias mais baratas de *hedge*, com menor impacto sobre o fluxo de caixa, além de fornecerem informações sobre a volatilidade esperada. Como exemplo, um dos parâmetros obtidos do mercado de opções é a volatilidade implícita, que pode ser aplicada para prever a volatilidade futura realizada.

Entretanto, diversos estudos sobre a volatilidade implícita de opções agropecuárias apontaram a existência de viés e de ineficiência nas previsões, com impactos diretos sobre a gestão de risco. Por exemplo, uma elevada volatilidade esperada pode aumentar a propensão de um produtor de carne a pagar mais pela proteção de risco. Caso as expectativas não se concretizem, o prêmio adicional resultará em prejuízo (BRITTAIN; GARCIA; IRWIN, 2011). Uma vez que a volatilidade implícita pode registrar viés e ineficiência sistemáticos, cabe identificar de que maneira os administradores de risco podem empregar métodos alternativos de previsão da volatilidade realizada futura.

Dessa forma, a questão de pesquisa deste trabalho é a comparação do desempenho das previsões de curto prazo da volatilidade dos preços da carne bovina do Brasil usando a volatilidade implícita das opções de boi gordo da BM&F-BOVESPA e a volatilidade calculada com modelos alternativos. Especificamente, objetiva-se: 1) empregar a volatilidade implícita extraída das opções, de média histórica e da abordagem simples (*naïve*) para prever a volatilidade realizada do contrato futuro de boi gordo com vencimento mais próximo, no horizonte de uma semana a frente; 2) examinar o desempenho das previsões da volatilidade realizada, testando a robustez e a ocorrência de viés e eficiência; e, 3) propor a adoção de modelo aplicando parâmetros de mercado facilmente acessíveis para efetuar previsões da volatilidade de curto prazo dos preços do contrato futuro de boi gordo.

O trabalho divide-se em quatro seções. Na primeira apontam-se as principais referências teóricas sobre o tema. A segunda registra a metodologia e os dados usados. Na terceira apresentam-se os resultados, discutindo os principais aspectos. A quarta e última descreve e resume as conclusões da pesquisa.

2. Referencial Teórico

A importância da administração estratégica de riscos aumentou para os sistemas agropecuários, crescentemente complexos e industrializados, em particular da gestão dos riscos operacionais. Dentre os riscos operacionais, a mitigação do risco de preço assume papel relevante, em especial no novo regime de preços de *commodities* prevalecente a partir de 2008. O recente ambiente de preços caracteriza-se por níveis médios de preço e volatilidade mais elevados (EUROPEAN COMMISSION, 2010).

Nesse sentido, Boehlje e Gloy (2011) registraram alta elevação do risco operacional e financeiro recentemente, em particular dos preços dos produtos agropecuários finais. Tal fato gerava a necessidade de proteger as margens operacionais com trava dos preços de compra de *inputs*, como sementes, adubos e produtos químicos, e dos preços de venda da

produção, com operações de *hedge* de risco de preços usando-se os mercados futuros e de opções.

Também, usa-se a previsão de volatilidade como parâmetro de modelos de avaliação de risco. Como exemplo, a modelagem Value-at-Risk (VaR) para *commodities* agropecuárias aplica a volatilidade como uma das variáveis explicativas (MANFREDO; LEUTHOLD, 2001). Em adição, a volatilidade implícita é amplamente empregada para previsões da volatilidade realizada, com resultados distintos quanto ao grau de eficiência preditiva.

Nesse aspecto, diversos autores pesquisaram a eficiência de previsões da volatilidade implícita de opções. Entretanto, não existe consenso sobre o método mais eficiente, havendo conclusões distintas. A diferença entre as eficiências preditivas pode ser atribuída às assimetrias derivadas da família do modelo de Black e Scholes (1973), ao período de análise e às características das *commodities* agropecuárias, dentre outros fatores.

Em particular, a prática de mercado para administração de risco generalizou o uso da volatilidade implícita de opções de *commodities* agropecuárias para previsões da volatilidade realizada no mercado a vista. Tal fato pode ser atribuído à disponibilidade imediata de informações no mercado de opções, obtidas a baixo custo e ininterruptamente, auxiliando a obtenção de *inputs* informacionais com baixa relação custo-benefício para aplicar na gestão de risco empresarial. Porém é necessário avaliar a qualidade das informações usadas para as previsões de volatilidade.

Examinando o valor de previsões mais eficientes para preços e volatilidade, Adam, Garcia e Hauser (1996), com o uso de modelagem de utilidade esperada para produtores de suínos, concluíram que as decisões dos produtores baseavam-se em diversas combinações de contratos futuros e de opções de compra e de venda, cujos preços sinalizavam previsões de mercado sobre a volatilidade e os preços futuros. Ainda, as informações mais eficientes sobre a volatilidade possuíam maior valor para os *hedgers*.

Figlewski (1997) avaliou a eficiência da volatilidade implícita para prever a volatilidade realizada de diversos ativos. Comparando as previsões, concluiu que a volatilidade implícita dominava estatisticamente a histórica. Entretanto, não significava que as previsões da volatilidade implícita eram mais precisas ou um melhor parâmetro para aplicar em modelos de precificação de opções, o que poderia ser medido pelo viés preditivo. Também, os efeitos dos *spreads* de compra e de venda das opções e do ativo subjacente objeto da opção, a falta de sincronização dos preços e os custos de transação afetavam a microestrutura do mercado de opções.

Empregando séries temporais, modelos ARCH e de volatilidade estocástica Andersen e Bollerslev (1998) identificaram boas previsões da volatilidade realizada futura. Em contraste, Jorion (1995) concluiu que as previsões com a volatilidade implícita de taxas cambiais geravam melhores previsões do que os modelos de séries temporais. Christensen e Prabhala (1998) reexaminaram os resultados das previsões de volatilidade implícita do índice S&P 100, apontando menor viés preditivo do que o registrado em estudos anteriores. O resultado poderia ser atribuído ao uso de uma série de tempo com maior número de observações não superpostas.

Recentemente, Glasserman e Wu (2011), usando opções sobre futuros cambiais, compararam as características da volatilidade implícita futura usando o arcabouço de volatilidade estocástica. Identificaram que as opções possuíam diferentes graus de informações sobre os preços futuros que podiam ser extraídas pela volatilidade implícita.

Fackler e King (1990) avaliaram os retornos das opções de milho, soja, boi gordo e suínos da Chicago Board of Trade (CBOT). Concluíram que os prêmios das opções podiam ser usados para obter informações sobre a distribuição probabilística dos preços, com baixo custo e atualização contínua. Contudo, os diferentes tipos de produto registravam diferentes graus de eficiência preditiva.

De forma análoga, examinando a volatilidade implícita de opções com vencimento próximo de contratos futuros de milho, soja e trigo, Simon (2002) registrou a ocorrência de robustez preditiva relevante. Além disso, a volatilidade implícita dos grãos englobava a informação fora da amostra de previsões de volatilidade sazonal. Tal fato poderia ser aplicado em estratégias operacionais com resultados financeiros positivos.

Também, Egelkraut e Garcia (2006) comparam as previsões da volatilidade futura entre a volatilidade implícita, modelos ARCH, volatilidade histórica imediata, média móvel de três anos e um índice composto, para diversos produtos agropecuários em vencimentos distintos. Concluíram que existia eficiência preditiva não viesada para alguns produtos sendo influenciada pelo menor espaço de tempo e distribuição espacial, diminuindo o grau associado de risco e incerteza da *commodity*. Egelkraut, Garcia e Sherrick (2007), usando o conteúdo informacional da estrutura a termo das volatilidades implícitas futuras das opções de milho do CME GROUP, avaliaram a eficiência preditiva, concluindo que eram previsoras eficientes. No curto prazo as previsões eram não viesadas e, para prazos mais longos, previam a direção e a magnitude da volatilidade futura.

Poteshman (2000) investigou as previsões de variância futura de opções do índice S&P 500. Concluiu que as previsões eram viesadas devido à ausência de alternativas de arbitragem e de estratégias para os formadores de mercado lucrarem com os *spreads* de compra e venda. Entretanto, grande parte do viés poderia ser eliminada pelo uso de dados de alta freqüência e de modelo de precificação com valores não nulos para o preço de mercado do risco de variância e dos erros de inovação dos preços no nível.

Christoffersen e Diebold (2000) estimaram a previsibilidade da volatilidade dos retornos em horizontes entre um e 20 pregões nos mercados de ações, de taxas de câmbio e de títulos, sem aplicar nenhuma modelagem. Concluíram que, se o horizonte temporal fosse superior a dez ou vinte dias, dependendo do ativo, as previsões de volatilidade eram pouco eficientes, podiam ser melhoradas com o intervalo temporal da amostra, o uso dados de alta fregüência e a adoção de métrica da volatilidade realizada.

Nesse sentido, Hayenga, Jiang e Lence (1996) apontaram que as previsões de volatilidade eram úteis para a análise e para a administração de risco das cadeias de carnes bovina e suína. A identificação de fatores explicativos para os preços a vista e futuros das cadeias de carnes melhoravam o ajuste dos modelos de previsão de preços.

Com relação à eficiência e à existência de vieses nas previsões de volatilidade implícita de opções agropecuárias, Manfredo, Leuthold e Irwin (2001) analisaram o desempenho de métodos alternativos de previsão de volatilidade para os preços a vista de boi gordo, do boi magro e do milho. O exame dos modelos de volatilidade implícita de opções de contratos futuros, de séries temporais e de especificações compostas identificou que a eficiência de nenhum método isolado superava as demais, embora houvesse evidências de que os administradores de risco e extensionistas aplicavam métodos compostos com séries temporais e volatilidade implícita quando disponíveis.

Também, Manfredo e Sanders (2004) concluíram que a volatilidade implícita de opções de boi gordo era um previsor viesado e ineficiente, apesar de englobar as previsões de modelagem GARCH em períodos fora da amostra. Adicionalmente, apontaram ajustes baseados nos testes de viés e eficiência para melhorar a robustez de previsão da volatilidade implícita, auxiliando os administradores de risco da cadeia de carne bovina a tomarem decisões mais eficazes.

Nesse sentido, Wang, Fausti e Qasmi (2011) examinaram um indicador baseado na taxa de variância de *swaps* sintetizado a partir de opções de compra e venda fora-do-dinheiro de milho. Concluíram que o indicador era uma ferramenta de previsão da variância futura mais eficiente, englobando um conjunto maior de informações e gerando menos erros preditivos do que a volatilidade implícita e a modelagem GARCH.

Entretanto, no Brasil existem poucos estudos sobre previsão de volatilidade a partir de opções agropecuárias. Aplicando a volatilidade implícita das opções de soja do CME GROUP para prever a volatilidade realizada de curto e de longo prazos da soja de Mato Grosso, Souza, Marques e Martines-Filho (2010) concluíram que as previsões de curto prazo eram eficientes, existindo vieses e assimetrias nas previsões de longo prazo. Tonin (2009), analisando as opções de café da BM&F-BOVESPA, identificou melhores resultados preditivos da volatilidade implícita comparados à volatilidade histórica.

No seu conjunto, pode-se afirmar que as pesquisas sobre previsões de volatilidade implícita de opções agropecuárias expressaram resultados distintos. Entretanto, quando identificadas previsões viesadas e ineficientes, é possível ajustar os resultados para melhorar a eficácia preditiva, auxiliando a obtenção de informações estratégicas para os administradores de risco. Nessa linha, a contribuição inédita deste estudo é a comparação, com modelos alternativos, das previsões da volatilidade realizada de curto prazo dos contratos futuros de boi gordo no Brasil, usando a volatilidade das opções negociadas na BM&F-BOVESPA, identificando ajustes nos parâmetros preditivos a partir dos testes de viés e de eficiência. A informação é um *input* estratégico para os administradores de risco da cadeia bovina do País.

3. Referencial Metodológico e Dados

Foram usados a volatilidade implícita das opções sobre contratos futuros de boi gordo da BM&F-BOVESPA e modelos alternativos para previsões da volatilidade realizada. O horizonte temporal foi de uma semana a frente, tomando por referência as quartas-feiras,

conforme a metodologia de Manfredo, Leuthold e Irwin (2001). Os autores concluíram que este horizonte temporal registra informações de mercado estratégicas para os agentes da cadeia produtiva de carne bovina.

Entretanto, segundo Andersen e Bollerslev (1998), a volatilidade realizada efetiva não é um parâmetro diretamente observável. Em conseqüência, foi necessário definir uma proxy, dada pelas Equações 1 e 2, adotando abordagem análoga a Jorion (1995), que definiu a volatilidade realizada como a raiz quadrada dos retornos médios quadráticos num horizonte temporal h:

$$_{t}\sigma_{t+h} = \sqrt{\frac{1}{h}\sum_{j=1}^{h}R_{t+j}^{2}}$$
 Eq. (1)
 $R_{t} = \ln{(P_{t})} - \ln{(P_{t-1})}$ Eq. (2)

Onde:

 $t\sigma_{t+h}$ = volatilidade realizada;

 R_t = retorno com composição contínua;

 P_{t} , P_{t-1} = preços futuros observados em t e t-1, respectivamente.

Como o objetivo era calcular a volatilidade realizada no intervalo de uma semana, a Equação 1 reduziu-se a:

$$_{t}\sigma_{t+1} = \sqrt{R_{t+1}^{2}}$$
 Eq. (3)

Além disso, para o cálculo da volatilidade realizada foi usada a série contínua dos preços dos contratos futuros de boi gordo da BM&F-BOVESPA com vencimento mais próximo, conforme Brittain, Garcia e Irwin (2011).

Aplicou-se a Equação 3 como *proxy* da volatilidade realizada, comparando o resultado com a volatilidade implícita no horizonte de uma semana. A seguir, para o cálculo da volatilidade implícita foi usada a fórmula de Black (1976) para a precificação de opções sobre contratos futuros de *commodities* (HULL; 2008), Equações 4 e 5:

$$V_c(x) = e^{-rT} [Y_0 N(d_1) - x N(d_2)]$$
 Eq. (4)

$$V_p(x) = e^{-rT} [x N(-d_2) - Y_0 N(-d_1)]$$
 Eq. (5)

Onde:

Vc(x), Vp(x) = valor de uma opção de compra e de venda, respectivamente, sobre uma unidade de contrato futuro de *commodity*;

x = preço de exercício da opção;

r = taxa de juros de um título sem risco;

T = data de vencimento da opção;

 Y_0 = preço do contrato futuro no instante de referência inicial t = 0;

$$d_{1} = \frac{\ln(Y_{0}/x) + \sigma^{2}T/2}{\sigma\sqrt{T}};$$

$$d_{2} = \frac{\ln(Y_{0}/x) - \sigma^{2}T/2}{\sigma\sqrt{T}} = d_{1} - \sigma\sqrt{T};$$

N(y) = função de distribuição de probabilidade cumulativa de uma distribuição normal padrão, ou seja, é a probabilidade que uma variável aleatória com distribuição normal padrão, com média zero e variância unitária, seja menor que y;

 σ = volatilidade dos preços futuros.

Calculou-se a volatilidade implícita semanal usando: i. os valores dos prêmios das opções de compra e de venda; ii. o preço do contrato futuro de boi gordo da BM&F-BOVESPA, observados no mercado no período t, de uma semana; iii. o preço de exercício; iv. a taxa de juros de um ativo sem risco, e v. o tempo a decorrer até o vencimento, T-t, resolvendo-se implicitamente as Equações 4 e 5.

Dessa maneira, obteve-se um vetor de parâmetros
para a distribuição, contendo as volatilidades dos preços futuros, cuja solução pode ser obtida por qualquer método de otimização não linear de mínimos quadrados, tais como Gauss-Newton ou Levenberg-Marquadt, dentre outros. Também, foram empregadas as informações contidas nas opções de compra e venda no-dinheiro, ou seja, aquelas cujo preço de exercício é igual ao preço a vista do ativo subjacente. Para a escolha das opções no-dinheiro aplicou-se o critério de moneyness de Ederington e Guan (2000), extraindo-se simultaneamente as informações contidas em várias as opções de compra e de venda, para um conjunto de preços de exercício, através das volatilidades implícitas.

Assim, a volatilidade implícita foi calculada pela média aritmética das volatilidades implícitas das opções de compra e de venda, conforme procedimento adotado por Simon (2002). Como taxa de juros dos ativos sem risco empregou-se a taxa do CDI diário com capitalização anual, base 252 dias do dia da avaliação (BACEN, 2011).

A resolução implícita das Equações 4 e 5 usou os prêmios de fechamento das quartas-feiras das opções de compra e venda no-dinheiro de boi gordo da BM&F-BOVESPA, no período amostral. A seguir, os resultados do cálculo da volatilidade implícita, com valores em base anual, foram convertidos para a periodicidade semanal, dividindo-se por $\sqrt{52}$.

Dessa maneira, foram aplicados os procedimentos de Manfredo e Sanders (2004). Segundo os autores, o emprego das opções no-dinheiro minimiza os problemas resultantes de aplicar a fórmula de Black (1976), desenvolvida para precificar opções européias, na avaliação de opções americanas, como são as opções de boi gordo negociadas na bolsa brasileira. Também, o uso das opções no-dinheiro minimiza o viés de alta das previsões, contendo mais informações sobre a volatilidade futura, devido à elevada liquidez. Outro ponto relevante é a existência do efeito sorriso da volatilidade (*volatility smile*) ao se calcular a volatilidade implícita com opções dentro-do-dinheiro (*in-the-money*) e fora-do-dinheiro (*out-of-money*).

Segundo Mayhew (1995), o efeito sorriso da volatilidade decorre de fricções de mercado, que impedem a precificação dos prêmios das opções segundo os modelos da família Black e Scholes (1973). Outro fato seria o processo estocástico associado ao preço do ativo subjacente diferir da hipótese de difusão log-normal suposta na modelagem Black e Scholes. Assim, eliminou-se o efeito sorriso do cálculo das volatilidades implícitas aplicando as opções no-dinheiro.

Também, para reduzir os erros de estimação na série de volatilidade implícita, foi calculada a média das opções de compra e venda, conforme Jorion (1995). Segundo Manfredo e Sanders (2004), o procedimento é consistente com a prática de mercado para avaliação das previsões com volatilidades implícitas no horizonte de uma semana.

Em adição, como modelos alternativos de previsão, foram usadas a volatilidade histórica e a avaliação simples (*naïve*), das Equações 6 e 7, respectivamente, conforme Manfredo, Leuthold e Irwin (2001):

$$_{t}\hat{\sigma}_{t+1,j} = \sqrt{\frac{1}{T}\sum_{j=0}^{T-1}R_{t-j,i}^{2}}$$
 Eq. (6)

Onde:

 $_{t}\hat{\sigma}_{_{t+1,j}}$ = previsão da volatilidade do próximo período, semanal, para a *commodity i*;

T = número de retornos quadrados passados usados na previsão;

 $R^2_{t,i}$ = retorno realizado na semana t para a commodity i;

O retorno médio da série tem média zero.

$$\hat{\sigma}_{t,h,i} = \sqrt{\sum_{j=0}^{h-1} R_{t-j,i}^2}$$
 Eq. (7)

Onde $\hat{\sigma}_{t,h,i}$ é a previsão de volatilidade do h-ésimo período para a commodity~i, com horizonte passado h.

A seguir foram efetuados os testes de desempenho das previsões de curto prazo, avaliando-se a robustez, o viés e a eficiência. Os resultados dos testes registraram o desempenho das previsões da volatilidade de curto prazo, *input* estratégico para auxiliar na gestão de risco de preços dos agentes da cadeia de carne brasileira com métricas de risco e com tomadas de decisão mais bem embasadas. Assim, foi testada a robustez das previsões de volatilidade aplicando a Equação 8, conforme Figlewski (1997) e Manfredo e Sanders (2004):

$$\sigma_{realizada.t} = \alpha + \beta \sigma_{VA.t} + \varepsilon_t$$
 Eq. (8)

Onde:

 $\sigma_{realizada,t}$ = volatilidade realizada;

 $\sigma_{VA,t}$ = volatilidade alternativa, a saber implícita, média móvel e simples.

A hipótese nula de ausência de viés da Equação 8 supõe que a média do erro de previsão é nula, e que $\sigma_{Vl,t}$ não é correlacionada com o erro de previsão. A seguir, foi examinado o viés das previsões com a Equação 9, aplicando-se o procedimento de Manfredo e Sanders (2004):

$$e_{t} = (\sigma_{t} - \hat{\sigma}_{t}) = \gamma_{1} + \mu_{t}$$
 Eq. (9)

Onde:

 e_t = erro da diferença entre as previsões da volatilidade realizada, σ_t , e da prevista, $\hat{\sigma}_t$.

A hipótese nula (H_0) da Equação 9 é a ausência de viés, γ_1 = 0. A hipótese alternativa (H_a) supõe que as previsões sistematicamente superestimam ou subestimam a volatilidade realizada se γ_1 < 0 e γ_1 > 0, respectivamente.

Em adição examinou-se a eficiência do tipo fraco das previsões, conforme Manfredo e Sanders (2004). Os autores consideraram que as previsões eram fracamente eficientes caso os erros de previsão (*e_t*) fossem ortogonais ao conjunto de informações e a erros de previsão anteriores. O teste de eficiência fraca foi feito com regressão simples, Equações 10 e 11:

$$e_t = \alpha_1 + \beta \hat{\sigma}_t + \upsilon_t$$
 Eq. (10)

$$e_t = \alpha_2 + \rho e_{t-1} + v_t$$
 Eq. (11)

Onde as variáveis foram definidas na Equação 9.

Para ilustrar, a hipótese de eficiência fraca implica β = 0 e ρ = 0, nas Equações 10 e 11, respectivamente. Um β estatisticamente significativo implica que a volatilidade implícita não é um estimador eficiente e, portanto, não minimiza a variância dos erros de previsão. Além disso, um sinal negativo de β indica que a volatilidade implícita registra previsões com valores extremos, que resultam em erros elevados.

Adicionalmente, examinou-se a qualidade das previsões no tempo, para registrar melhorias ou não, adotando-se os procedimentos de Manfredo e Sanders (2004), avaliando a hipótese de a média das previsões da volatilidade implícita das opções de compra e venda no-dinheiro melhorar com o tempo. Foi aplicada uma regressão para testar o valor absoluto dos erros de previsão contra uma tendência, conforme a Equação 12:

$$|e_t| = \theta_1 + \theta_2 Tend\hat{e}ncia_t + \upsilon_t$$
 Eq. (12)

A hipótese nula (H_0) da Equação 12, de não ocorrência de melhoria sistemática, implicaria θ_2 = 0. De outra forma, um coeficiente estatisticamente significativo demonstraria que os erros de previsão declinaram com o tempo. Tal fato poderia ser atribuído ao uso contínuo do modelo de Black (1976) para extrair a volatilidade implícita de opções de boi gordo, criando vieses e ineficiências constantes nas previsões (MANFREDO; SANDERS, 2004).

3.1. Dados

Foram empregados os seguintes conjuntos de dados na pesquisa:

- 1) a série contínua dos preços de ajuste futuros de boi gordo, de acordo com a BM&F-BOVESPA (2011);
- 2) os prêmios de fechamento das opções de compra e venda de boi gordo, de acordo com a BM&F-BOVESPA (2011);
- 3) a taxa do CDI diário com capitalização anual, base 252 dias do dia da avaliação, de acordo com o BACEN (2011).

Os dados foram usados como parâmetros para cálculo da volatilidade implícita, resolvendo implicitamente a fórmula de Black (1976), Equações 4 e 5.

O período analisado foi de janeiro de 2007 a dezembro de 2011. Foi escolhida a periodicidade pelos fatores de acessibilidade de dados, incremento das operações com contratos futuros e de opções de boi gordo na BM&F-BOVESPA e inclusão de diferentes regimes de preços de *commodities* (MATTOS; GARCIA, 2011; EUROPEAN COMMISSION, 2010).

Como parâmetros para o cálculo da volatilidade histórica média, usados na Equação 6, foram examinados os intervalos de três, cinco, oito, 13 e 21 semanas, escolhendo-se o valor que obteve o menor erro médio absoluto - três semanas (PARK; IRWIN, 2007).

Em adição, foram excluídos os valores de volatilidade implícita que violaram a fórmula de Black (1976), Equações 4 e 5, e os situados fora do parâmetro de dez por cento de *moneyness*. Os ajustes geraram uma série descontínua no tempo, porém com valores suficientes para prever a volatilidade realizada de uma semana a frente.

4. Resultados e Discussão

Para melhor apreciação, o Gráfico 1 explicita a volatilidade semanal realizada dos preços futuros de boi gordo da BM&F-BOVESPA durante o período avaliado, objeto das alternativas de previsões.

Pelo exame do Gráfico 1, observou-se que a maioria dos valores da volatilidade realizada foram inferiores a 20%, com alguns *outliers* nos períodos inicial e intermediário. Os últimos poderiam ser atribuídos à crise financeira internacional de 2008, que impactou o preço das *commodities* (EUROPEAN COMMISSION, 2009).

Em adição, as estatísticas descritivas e as medidas das previsões alternativas da volatilidade semanal realizada estão na Tabela 1.

100,0% 80,0% 60,0% 40,0% 20,0%

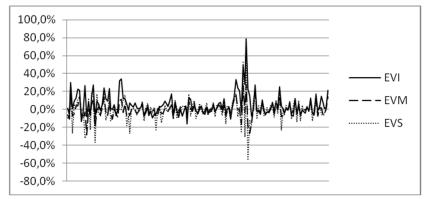
Gráfico 1. Volatilidade semanal realizada dos preços futuros de boi gordo. Período de julho de 2007 a dezembro de 2011, com semanas variadas.

Fonte: Dados da pesquisa.

Tabela 1 - Estatísticas descritivas e medidas de precisão das previsões. Período de julho de 2007 a dezembro de 2011, com semanas variadas.

	Média	Desvio- padrão	Min	Máx	EQM	EAM	EM
VI	0,065	0,032	0,007	0,213	0,018	0,085	0,050
VM	0,119	0,090	0,024	0,587	0,006	0,056	-0,004
VS	0,119	0,127	0,000	0,869	0,019	0,095	-0,004
VR	0,115	0,121	0,000	0,869			

Obs.: VI = volatilidade implícita; VM = volatilidade calculada pela média móvel de 3 semanas; VS = volatilidade simples; VR = volatilidade realizada; EQM = erro quadrático


médio; EAM = erro absoluto médio; EM = erro médio. N = 151.

Fonte: Dados da pesquisa.

Assim, quando comparadas com a volatilidade realizada, a média da volatilidade implícita foi inferior, enquanto as médias da volatilidade calculada pela média móvel de três semanas e da volatilidade simples foram superiores. Tal observação pode indicar uma sistemática subavaliação da volatilidade realizada pela volatilidade implícita, enquanto as previsões dos outros dois modelos de previsão situaram-se mais próximas do valor realizado. Adicionalmente, o exame do desvio-padrão da volatilidade implícita, com valor inferior aos outros valores de desvios-padrão, pode apontar a manutenção da tendência de subavaliação. Além disso, foram registrados os menores valores de tipos de erros para a volatilidade calculada pela média móvel de três semanas.

Também, foram explicitados os erros de previsão, calculados pela diferença entre a volatilidade realizada e as previsões aplicando os diferentes modelos, no Gráfico 2:

Gráfico 2 - Erros de previsão. Período de julho de 2007 a dezembro de 2011, com semanas variadas.

Obs.: EVI = erro da volatilidade implícita; EVM = erro da volatilidade média;

EVS = erro da volatilidade simples.

Fonte: dados da pesquisa.

Da mesma forma, foram identificados os valores do erro da volatilidade calculada pela média de três semanas abaixo dos demais valores. Tal fato pareceu repetir a conclusão de que a volatilidade média registrou os menores erros.

A seguir foi calculada a robustez das previsões alternativas de volatilidade, cujos resultados estão na Tabela 2.

Tabela 2 - Teste do viés das alternativas de volatilidade, $\sigma_{realizada,t} = \alpha + \beta \sigma_{VA,t} + \varepsilon_t$. Período de julho de 2007 a dezembro de 2011, com semanas variadas. H₀: α = 0, β = 1.

	VI	VM	VS
②□estimado	0,104*	-0,004	0,072*
estimado	0,169	1,007*	0,359*
Estatística-F	0,585	0,000	0,000
R^2	0,002	0,567	0,143

(*) significativo em nível de 5%, teste-t bicaudal.

Obs.: VI = volatilidade implícita; VM = volatilidade calculada pela média móvel de 3 semanas; VS = volatilidade simples. N = 151.

Fonte: dados da pesquisa.

Em adição, os resultados do teste de viés das previsões de volatilidade pareceram apontar a existência de viés na volatilidade implícita, enquanto as previsões dadas pela volatilidade calculada pela média de três semanas e pela volatilidade simples eram não viesadas. Também, o valor de R^2 para a volatilidade calculada pela média de três semanas foi superior aos demais.

Em seguida, foi calculado o viés de previsão, conforme a Tabela 3.

Tabela 3 - Teste do viés de previsão, $e_t = \gamma_1 + \mu_t$. Período de julho de 2007 a dezembro de 2011, com semanas variadas. H₀: $\gamma_1 = 0$.

	VI	VM	VS
Estimação de γ	0,758*	-0,031	-0,031
(teste-t)	(4,936)	(-0,564)	(-0,327)

(*) significativo em nível de 5%, teste-t bicaudal.

Obs.: VI = volatilidade implícita; VM = volatilidade calculada pela média móvel de 3 semanas; VS = volatilidade simples; VR = volatilidade realizada.

Fonte: dados da pesquisa.

Dessa maneira, o exame dos resultados da Tabela 3 identificou a existência de viés sistemático nas previsões de volatilidade implícita. Em contraste, as previsões dos outros dois modelos não apresentaram vieses.

Também, empregaram-se os testes de eficiência preditiva dos modelos de volatilidade, conforme a Tabela 4.

Tabela 4 - Teste de eficiência preditiva. Período de julho de 2007 a dezembro de 2011, com semanas variadas.

	VI	VM	VS
$e_t = \alpha_1 + \beta \hat{\sigma}_t + \upsilon_t$ β estimado (teste-t)	-0,831* (-2,687)	0,007 (0,096)	-0,641* (-8,903)
$e_t = \alpha_2 + \rho e_{t-1} + \upsilon_t$ ρ estimado (teste-t)	0,263* (3,292)	-0,112 (-1,356)	-0,448* (-6,066)

(*) significativo em nível de 5%, teste-t bicaudal.

Obs.: VI = volatilidade implícita; VM = volatilidade

calculada pela média móvel de 3 semanas; VS = volatilidade

simples; VR = volatilidade realizada.

Fonte: dados da pesquisa.

Dessa forma, a comparação dos testes de eficiência preditiva expressou a volatilidade calculada pela média das três semanas como a mais eficiente. Tal fato reafirmou os resultados dos testes de robustez e viés sistemático. Em adição, foram descritos os testes de melhoria com o tempo, conforme a Tabela 5.

Tabela 5 - Teste de melhoria com o tempo, $|e_r| = \theta_1 + \theta_2 Tendência_r + \upsilon_r$. Período de julho de 2007 a dezembro de 2011, com semanas variadas.

	VI	VM	VS
θ_2 estimado x 10^3	-0,157	-0,119	-0,119
(teste-t)	(-0.825)	(-1,144)	(-0,637)

Obs.: VI = volatilidade implícita; VM = volatilidade calculada pela média móvel de 3 semanas; VS = volatilidade simples; VR = volatilidade realizada.

Fonte: dados da pesquisa.

Em contraste com os resultados anteriores, o teste de melhoria com o tempo de todos os três modelos de volatilidade indicou que não ocorreram melhorias em nenhum modelo de previsão. Isto significou que os erros tendiam a repetir-se.

Em resumo, os resultados das previsões de volatilidade implícita das opções de boi gordo da BM&F-BOVESPA alinharam-se com os dos estudos similares de Manfredo e Sanders (2004) e de Brittain, Garcia e Irwin (2011). Tal fato indicou que a volatilidade implícita era um previsor da volatilidade realizada dos preços futuros de curto prazo não-robusto e ineficiente, com viés sistemático. A identificação de viés na volatilidade implícita poderia ilustrar uma precificação deficiente dos prêmios das opções. Tal fato poderia ser atribuído à microestrutura do mercado de opções, ou seja, suas características operacionais, os *spreads* de compra e venda, e a baixa liquidez do mercado. Também, outra causa poderia ser a falta de uma cultura de *hedge* com o uso de opções sobre contratos futuros pelos administradores de risco da cadeia de carne bovina do Brasil.

Dessa maneira, os baixos erros de previsão, o elevado valor do coeficiente R^2 , e a rejeição das hipóteses de existência de viés sistemático e de ineficiência preditiva apontaram que o melhor modelo para previsão da volatilidade realizada dos preços futuros de boi gordo da BM&F-BOVESPA seria a volatilidade calculada pela média móvel de três semanas. Adicionalmente, a modelagem poderia ser facilmente calculada com dados disponíveis no mercado, facilitando as decisões operacionais dos administradores de risco da cadeia de carne bovina do Brasil.

5. Resumo e Conclusões

Esta pesquisa objetivou comparar o desempenho das previsões de curto prazo da volatilidade dos preços da carne bovina do Brasil usando a volatilidade implícita das opções de boi gordo da BM&F-BOVESPA e a volatilidade calculada com modelos alternativos. Nesse sentido, foram empregadas a volatilidade implícita extraída das opções, calculada de média histórica de três semanas, e a previsão simples (naïve), para prever a volatilidade realizada do contrato futuro de boi gordo com vencimento mais próximo, no horizonte de uma semana à frente, examinando o desempenho das previsões com testes de robustez, viés e eficiência. Além disso, propôs-se a adoção do modelo mais eficiente, que aplicasse

parâmetros de mercado facilmente acessíveis para efetuar previsões da volatilidade de curto prazo dos preços do contrato futuro de boi gordo.

Com efeito, a previsão da volatilidade de curto prazo dos preços futuros de boi gordo a partir de informações eficientes é um parâmetro gerencial estratégico para as decisões alocativas na cadeia da carne bovina do Brasil. As decisões de produção, de comercialização e de *hedge* podem ser ajustadas de maneira mais eficiente a partir da volatilidade esperada de curto prazo. O acompanhamento da volatilidade semanal dos preços futuros de boi gordo é uma prática administrativa generalizada para tomar decisões. Entretanto, as decisões precisam ser embasadas em parâmetros e em informações eficazes (MANFREDO; SANDERS, 2004).

Dessa forma, foram aplicados testes para avaliar a robustez, a eficiência e a melhora no tempo das informações geradas pelos três modelos de volatilidade analisados. A volatilidade implícita, calculada pelos prêmios das opções de boi gordo da BM&F-BOVESPA, registrou os valores mais baixos de previsão e a ocorrência de viés sistemático, de ineficiência e nenhuma melhoria no tempo. Os resultados alinharam-se com estudos similares de volatilidade implícita de opções de boi gordo dos EUA (BRITTAIN; GARCIA; IRWIN, 2011; MANFREDO; SANDERS, 2004).

Em adição, a comparação entre os modelos de previsão de volatilidade de curto prazo apontou que os menores erros de previsão e a estimação de valores mais robustos foram registrados pela volatilidade calculada pela média de três semanas. Também, os testes da volatilidade média rejeitaram as hipóteses de viés sistemático e de ineficiência, apesar de não ocorrerem melhorias com o tempo. O último resultado também se repetiu para os modelos de volatilidade implícita e de volatilidade simples (*naïve*). Entretanto, a análise geral do desempenho das previsões apontou o modelo de volatilidade calculada com a média de três semanas como o modelo de maior eficiência preditiva.

Por exemplo, uma previsão de volatilidade de preços de curto prazo do boi gordo eficiente pode ser aplicada como parâmetro em modelos de Value-at-Risk (VaR). Adicionalmente, pode servir de medida de avaliação, de monitoramento de riscos e de fixação de preços futuros, pois geralmente a negociação de compra e venda na cadeia de boi gordo baseia-se numa fórmula de custo a partir de um indicador de preços. Outro aspecto gerencial estratégico é a avaliação dos impactos da volatilidade dos preços sobre o fluxo de caixa dos agentes da cadeia, sobre as decisões de *hedge* e sobre o momento ideal de comercialização. Nesse sentido, o modelo de volatilidade mais eficiente identificado foi o de volatilidade calculada pela média de três semanas dos preços futuros de boi gordo da BM&F-BOVESPA.

Em conclusão, o estudo identificou o modelo de volatilidade calculada pela média de três semanas como o de maior robustez, não viesado e eficiente. Entretanto o resultado limitou-se ao período analisado, podendo haver melhorias informacionais futuras em outros modelos, particularmente de volatilidade implícita, decorrentes de mudanças de desempenho operacional e de microestrutura do mercado.

Neste particular, sugerem-se, como futuras pesquisas, a avaliação de outros modelos de previsão de volatilidade dos preços futuros de boi gordo, em particular da família ARCH, e

a avaliação contínua da volatilidade implícita das opções de boi gordo e de outras commodities agropecuárias operadas na BM&F-BOVESPA num cenário de aumento de volume negociado. Outro campo de estudo poderia ser a previsão de volatilidades futuras das commodities agropecuárias brasileiras em diversos horizontes temporais.

Notas:

i. Segundo os autores, a moneyness avalia o quão "dentro-do-dinheiro" estão as opções de compra e venda, calculada pelo valor presente à taxa de juros sem risco com capitalização contínua da razão entre o valor do preço a vista do ativo-subjacente e do preço de exercício da opção, no intervalo de tempo entre as datas de avaliação e de vencimento das opções.

Referências

ADAM, B. D.; GARCIA, P.; HAUSER, R. J. The value of information to hedgers in the presence of futures and options. **Review of Agricultural Economics**, v. 18, n. 3, p. 437-447, 1996.

ANDERSEN, T. G.; BOLLERSLEV, T. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. **International Economic Review**, v. 39, n. 4, p. 885-905, p. 1998.

BANCO CENTRAL DO BRASIL - BACEN. Séries estatísticas. Disponível em: www.bcb.gov.br. Acesso em: 21/12/11.

BLACK, F. Studies of stock price volatility changes. In: MEETINGS OF THE AMERICAN STATISTICAL ASSOCIATION. **Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economics Statistics Section.** Washington: American Statistical Association, p. 177–181, 1976.

BLACK, F.; SCHOLES, M. The pricing of options and corporate liabilities. **Journal of Political Economy**, v. 81, n. 3, p. 637–659, 1973.

BM&F-BOVESPA. Boletim estatístico. Disponível em: www.bmf.com.br. Acesso em: 21/12/11.

BOEHLJE, M.; GLOY, B. Managing the risk – capturing the opportunity in crop farming. **Purdue University**. Disponível em:

http://www.agecon.purdue.edu/commercialag/progevents/Manage_Risk_Webinar/managing%20th e%20risk.pdf. Acesso em: 20/12/11.

BRITTAIN, L.; GARCIA, P.; IRWIN, S. H. Live and feeder cattle options markets: returns, risk, and volatility forecasting. **Journal of Agricultural and Resource Economics**, v. 36, n. 1, p. 28-47, 2011.

CHRISTENSEN, B. J.; PRABHALA, N. R. The relation between implied and realized volatility. **Journal of Financial Economics**, v. 50, p. 125-150, 1998.

CHRISTOFFERSEN, P. F.; DIEBOLD, F. X. How relevant is volatility forecasting for financial risk management. **Review of Economics and Statistics**, v. 82, p. 12-22, 2000.

EDERINGTON, L. H.; GUAN, W. Why are those options smiling? **University of Oklahoma Center for Financial Studies Working Paper**. 2000. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.203.3541&rep=rep1&type=pdf. Acesso em: 30/11/11.

EGELKRAUT, T. M.; GARCIA, P. Intermediate volatility forecasts using implied forward volatility: the performance of selected agricultural commodity options. **Journal of Agricultural and Resource Economics**, v. 1, n. 3, p. 508-528, 2006.

EGELKRAUT, T. M.; GARCIA, P.; SHERRICK, B. J. The term structure of implied forward volatilities: recovery and informational content in the corn options market. **American Journal of Agricultural Economics**, v. 89, n. 1, p. 1–11, 2007.

EUROPEAN COMMISSION. Commodity price volatility: International and EU perspective. Directorate-general for agriculture and rural development. Agricultural Trade Policy Analysis. 2010. Disponível em: http://ec.europa.eu/agriculture/analysis/tradepol/commodityprices/240610_en.pdf. Acesso em: 30/11/11.

FACKLER, P. L.; KING, R. P. Calibration of option-based probability assessments in agricultural commodity markets. **American Journal of Agricultural Economics**, v.72, n.1, p. 73-83, 1990.

FIGLEWSKI, S. Forecasting Volatility. **Financial Markets, Institutions & Instruments**, v. 6, n. 1, p.1-88, 1997.

GLASSERMAN, P.; WU, Q. Forward and future implied volatility. **International Journal of Theoretical and Applied Finance**, v. 14, n. 3, p. 407–432, 2011.

HAYENGA, M. L.; JIANG, B.; LENCE, S. H. Improving wholesale beef and pork product cross hedging. **Agribusiness**, v. 12, n. 6, p.541-559, 1996.

HULL, J. C. Options, futures, and other derivatives, 7^a ed. New York: Pearson Prentice-Hall, 2008.

JORION, P. Predicting volatility in the foreign exchange market. **The Journal of Finance**, v. 50, n. 2, p. 507-528, 1995.

MANFREDO, M. R.; LEUTHOLD, R. M. Market risk and the cattle feeding margin: na application of value-at-risk. **Agribusiness**, v. 17, n. 3, p. 333–353, 2001.

MANFREDO, M. R.; LEUTHOLD, R. M.; IRWIN, S. H. Forecasting fed cattle, feeder cattle, and corn cash price volatility: the accuracy of time series, implied volatility, and composite approaches. **Journal of Agricultural and Applied Economics**, v. 33, n. 3, p. 523-538, 2001.

MANFREDO, M. R.; SANDERS, D. R. The forecasting performance of implied volatility from live cattle options contracts: implications for agribusiness risk management. **Agribusiness**, v.20, n.2, p. 217-230, 2004.

MATTOS, F.; GARCIA, P. Changes in liquidity, cash market activity, and futures market performance: evidence from live cattle market in Brazil. NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management. St. Louis, EUA, 2001. **Anais** Disponível em: http://www.farmdoc.illinois.edu/nccc134. Acesso em: 30/11/11.

MAYHEW, S. Implied volatility. Financial Analysts Journal, v. 51, n. 4, p. 8-21, 1995.

PARK, C. H.; IRWIN, S. H. What do we know about the profitability of technical analysis? **Journal of Economics Survey,** v. 21, n. 4, p. 786-826, 2007.

POTESHMAN, A. M. **Forecasting future variance from option prices**. OFOR Paper Number 00-07. University of Illinois at Urbana-Champaign. 2000. 67 p. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.197.9432&rep=rep1&type=pdf. Acesso em: 30/11/11.

SIMON, D. P. Implied volatility forecasts in the grains complex. **The Journal of Futures Markets**, v. 22, n. 10, p. 959–981, 2002.

SOUZA, W. A. R.; MARQUES, P. V.; MARTINES-FILHO, J. G. O Uso da estrutura a termo das volatilidades implícitas futuras das opções de soja do CME GROUP para previsões da volatilidade e dos preços a vista em Mato Grosso. In: Congresso da Sociedade Brasileira de Economia Administração e Sociologia - SOBER, 48., Campo Grande, 2010. **Anais.**..Campo Grande: SOBER, 2010. Disponível em: http://www.sober.org.br/palestra/15/173.pdf. Acesso em: 01/12/11.

TEIXEIRA, G. S.; MAIA, S. F. Impacto da febre aftosa no preço da arroba do boi gordo, recebido pelo produtor no Brasil. **Revista de Economia e Agronegócio**, v. 6, n. 2, p. 195-214, 2008.

TONIN, J. M. Aplicabilidade dos modelos de precificação para as opções sobre contratos futuros de café arábica na BM&F-BOVESPA. 2009. Dissertação (Mestrado em Economia Aplicada) – Universidade Federal de Viçosa, Viçosa, 2009. Disponível em: http://www.tede.ufv.br/tedesimplificado/tde_arquivos/6/TDE-2010-06-09T1232487-2268/Publico/texto%20completo.pdf>. Acesso em: 01/12/11.

UNITED STATES DEPARTMENT OF AGRICULTURE – USDA. 2011. **Livestock and poultry:** world markets and trade. Out./2011. Disponível em: http://www.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf . Acesso em: 19/12/11.

WANG, Z.; FAUSTI, S. W.; QASMI, B. A. Variance risk premiums and predictive power of alternative forward variances in the corn market. **The Journal of Futures Markets**, v. 00, n. 00, p. 1–22, 2001. DOI: 10.1002/fut.20527.